Department of Chemistry
Senior Research Initiation

Name ___________________________ ID # ___________________________
Address ___________________________
Home Phone ___________________________ Email ___________________________

You must talk with at least three faculty members about possible senior research problems and mutual interests. Please have each faculty member sign below at the completion of the research discussion. Return the completed form to the Chemistry Office.

Faculty Signatures Date

I understand that Chem 4110 and Chem 4000 (or equivalent) are prerequisites for enrollment in Chem 4160. However, the course instructor may waive (a) course prerequisite(s). I also understand that Chem 4160-4170 must be taken in separate semesters.

Chem 4160 and 4170 are writing intensive courses: an approved final report that conforms to ACS standards is required upon completion of Senior Research. An approved copy must be submitted to the Department for the records before a grade will be issued.

All students taking senior research are required to give a presentation (~20 minutes) describing their research. This talk is to be given during the last semester the student is enrolled in senior research. The student and faculty advisor are to schedule the talk. This presentation may be given at an area specific group meeting.

Graduation with distinction in chemistry is an honor available to qualified students. Applications must be made prior to the last semester before graduation. Ask your advisor or the Director of Undergraduate Studies for details. Partial requirements are: Cumulative GPA 3.0; Chemistry GPA 3.3; Senior Research (final report) and recommendation from senior research advisor. Application must be made to the departmental Honors and Awards Committee one semester prior to expected graduation.

I request permission to register for CHEM ____________ for ________________ semester, 20 ___. The work will be directed by the faculty member whose signature appears below.

I also agree to employ good techniques, to be careful and to observe all safety rules and policies while working in the laboratory. These policies include completion of hazardous waste training course and CITI online training modules. I understand that law requires safety glasses to be worn whenever I am in the laboratory. I understand that all lab work must be properly supervised and that an approved final report must be submitted to the Department. I further understand that the Chemistry Department of Georgia State University does not assume responsibility for any injuries or property damages sustained due to my own negligence or misconduct.

Students Signature ___________________________ Date ________________

Faculty Advisor Signature ___________________________ Date ________________

Approved ___________________________ Date ________________

Director of Undergraduate Studies, Department of Chemistry
Request for Permission to Register
CHEM 4160

For ___________________________ Semester, 20________

Name of Student ___________________________ ID # ___________________________

has filed the Senior Research Initiation form with the Chemistry Office and requests permission to register for Chem 4160, Senior Research.

I understand that to work in the lab, I must complete hazardous waste training.

I also understand that I must successfully complete the CITI online training (minimum: Physical Science modules; others if applicable) during the first week of the term (can be done before term starts) if not already completed (submit printout of scores to the Director of Undergraduate Studies).

I understand that I must develop a plan for the proposed Senior Research project in conjunction with my faculty research advisor before beginning the project. The plan should include (1) title of project, (2) name of student, (3) name of faculty advisor, (4) purpose, (5) possible methods of attack, and (6) pertinent literature references.

I further understand that since this is a writing intensive course, a final written report must be submitted to the faculty advisor on or before the first day of exams week describing progress in the course. The research advisor will provide feedback until the final rewritten report meets ACS standards, etc. The departmental Director of Undergraduate Studies will also review the final paper for style and suggest revisions if necessary before a grade will be issued. The Undergraduate Director will also review documentation of completion of Hazardous Waste training and CITI training.

Signature of Student ___________________________ Date ___________________________

Chem 4160 requires submission of an approval final report. A passing grade (C or higher) in 4160 will constitute permission to register for Chem 4170. Chem 4170 also requires an approved final report which could form the basis of a journal article. This final report, after approval as for 4160 by the research director and Director of Undergraduate Studies, will be on file in the Chemistry Office. A grade of “I” will be awarded to all students who do not meet this requirement.

The plan and objectives for this Chem 4160 project have been developed, and I agree to direct the work, provide feedback for revision of the final report, schedule a presentation of the research, and assign a grade. * I will also be responsible for making sure that student has completed hazardous waste training and CITI online training before lab work is undertaken.

Name of (Advisor) Faculty Member* ___________________________

Signature* ___________________________ Date ___________________________

*Note: Before a letter grade can be assigned, the following conditions must be met: (1) Director of Undergraduate Studies has checked and approved the style of report (not the content!); (2) Hazardous Waste and CITI training has been documented; (3) a final copy of report s on file in the chemistry department with advisor signature and grade on cover sheet. If any of these conditions is not met, an Incomplete must be issued by the advisor until all conditions are completed.
Request for Permission to Register
CHEM 2950 or 4950

For ___________________ Semester, 20______

Name of Student ___ ID # __________________________

has filed the Research Initiation form with the Chemistry Office and requests permission to register for Chem 2950 or 4950 for Research.

I understand that to work in the lab, I must complete hazardous waste training.

I also understand that I must successfully complete the CITI online training (minimum: Physical Science modules; others if applicable) during the first week of the term (can be done before term starts) if not already completed (submit printout of scores to the Director of Undergraduate Studies).

I understand that I must develop a plan for the proposed Senior Research project in conjunction with my faculty research advisor before beginning the project. The plan should include (1) title of project, (2) name of student, (3) name of faculty advisor, (4) purpose, (5) possible methods of attack, and (6) pertinent literature references.

I further understand that since this is a writing intensive course, a final written report must be submitted to the faculty advisor on or before the first day of exams week describing progress in the course. The research advisor will provide feedback until the final rewritten report meets ACS standards, etc. The departmental Director of Undergraduate Studies will also review the final paper for style and suggest revisions if necessary before a grade will be issued. The Undergraduate Director will also review documentation of completion of Hazardous Waste training and CITI training.

Signature of Student __ Date __________________________

Chem 2950 and 4950 requires submission of an approval final report. A grade of (C or higher) is passing. This final report, after approval by the research director and Director of Undergraduate Studies, will be on file in the Chemistry Office. A grade of “T” will be awarded to all students who do not meet this requirement.

The plan and objectives for this Chem 2950 or 4950 project have been developed, and I agree to direct the work, provide feedback for revision of the final report, schedule a presentation of the research, and assign a grade. * I will also be responsible for making sure that student has completed hazardous waste training and CITI online training before lab work is undertaken.

Name of (Advisor) Faculty Member* __

Signature* __________________________________ Date __________________________

*Note: Before a letter grade can be assigned, the following conditions must be met: (1) Director of Undergraduate Studies has checked and approved the style of report (not the content!); (2) Hazardous Waste and CITI training has been documented; (3) a final copy of report s on file in the chemistry department with advisor signature and grade on cover sheet. If any of these conditions is not met, an Incomplete must be issued by the advisor until all conditions are completed.
CHEM 4160-4170-2950-4950

Guidelines for Preparing Research Report

Research experience for the undergraduate chemistry student is as close to a professional problem-solving activity as anything in the curriculum. It gives the student exposure to research methodology and an opportunity to work closely with the faculty advisor. It usually requires the use of advanced concepts, a variety of experimental techniques, and state-of-the-art instrumentation. A good research experience develops intellectual curiosity and is an important stimulus toward a career in science.

Ideally, undergraduate research should focus on a well-defined project that stands a reasonable chance of completion in the time available to the student. A literature survey alone is not a satisfactory research project. Neither is a repetition of established procedures. Research is genuine exploration of the unknown that leads to new knowledge, which often warrants publication. But whether or not the results of a research project are publishable, the project should be communicated in the form of a student-written research report. It is important for the student to realize that science depends on precise transmission of facts and ideas. To communicate effectively, the research project must be described in writing. Preparation of a comprehensive written research report is an essential part of a valid research experience, and the student should be made aware of this requirement at the outset of the project. Interim reports may also be required, usually at the termination of the semester. Sufficient time should be allowed for satisfactory completion of reports, taking into account that initial drafts should be critiques by the faculty advisor and corrected by the student at each stage.

Guidelines on how to prepare a professional-style research report are not routinely available to undergraduate students. For this reason, the following information on report writing with a suggested format is provided to be helpful to undergraduate researchers and to faculty advisors.

A Useful Text

This volume is an invaluable writer’s handbook in the field of chemistry. It contains a wealth of data on preparing any type of scientific report and is useful for both students and professional chemists. Every research laboratory should have a copy, and it should be as accessible as the _Handbook of Chemistry and Physics_. It gives pointers on the organization of a scientific paper, correct grammar and style, and accepted formats in citing chemical names, chemical symbols, units, and typefaces and type sizes, and giving oral presentations. In addition, there is a brief overview of the chemical literature, the way in which it is organized and how information is disseminated and retrieved. A list of other excellent guides to technical writing is also provided. See also _The Basics of Technical Communicating_, Cain, B.E.; ACS Professional Reference Book, American Chemical Society: Washington, DC, 1988.

Organization

Most scientific research reports, irrespective of the field, parallel the method of scientific reasoning. That is: the problem is defined, a hypothesis is created, experiments are devised to test the hypothesis, experiments are conducted, and conclusions are drawn. This framework is consistent with the following organization of a research report:

Title
Abstract
Introduction
Experimental Details or Theoretical Analysis
Results
Discussion
Conclusion
References
Title and Title Page

The title should reflect the content and emphasis of the project described in the report. It should be as short as possible and include essential key words.

The author’s name (e.g., Mr. B. Chung) should follow the title on a separate line, followed by the author’s affiliation (e.g., Department of Chemistry, Georgia State University, Atlanta, GA 30302) and possibly the origin of the report (e.g., In partial fulfillment of a Senior Thesis Project under the supervision of Professor Danielle F. Green, May, 2006 and/or the course number and term, e.g., Chem 4160, Spring 2006). For Chem 4160/4170 reports, there should be a place on the title page for the faculty advisor to write the course grade and sign.

All of the above could appear on a single cover page. Acknowledgements and a table of contents can be added as a preface pages if desired.

Abstract

The abstract should, in the briefest terms possible, describe the topic, the scope, the principal findings, and the conclusions. It should be written last to reflect accurately the content of the report. The length of the abstracts varies but seldom exceeds 200 words.

The research student should understand that a primary objective of an abstract is to communicate to the reader the essence of the paper. The reader will then be the judge of whether to read the full report or not. The student should also know that if the report were to appear in the primary literature, the abstract would serve as a key source of indexing terms and key words to be used in information retrieval. Author abstracts are often published verbatim in Chemical Abstracts.

Introduction

“A good introduction is a clear statement of the problem or project and why you are studying it.” (The ACS Style Guide, American Chemical Society: Washington, DC, 1986.)

The nature of the problem and why it is of interest should be conveyed in the opening paragraphs. This section should describe clearly but briefly the background information on the problem, what has been done before (with proper literature citations), and the objectives of the current project. A clear relationship between the current project and the scope and limitations of earlier work should be made so that the reasons for the project and the approach will be understood.

Experimental Details

This section should describe what was actually done. It is a succinct exposition of the laboratory notebook, describing procedures, techniques, instrumentation, special precautions, and so on. It should be sufficiently detailed that other experienced researchers would be able to repeat the work and obtain comparable results.

In theoretical reports, this section would include sufficient theoretical or mathematical analysis to enable derivations and numerical results to be checked.

If the experimental section is very lengthy and very detailed, as in synthetic work, it can be placed at the end of the report or as an appendix so that it does not interrupt the conceptual flow of the report. It’s placement will depend on the nature of the project and the discretion of the writer.
Results

In this section, relevant data, observation, and findings are summarized. Tabulation of data, equations, charts, and figures can be used effectively to present results clearly and concisely.

Discussion

The crux of the report is the analysis and interpretation of the results. What do the results mean? How do they relate to the objectives of the project? To what extent have they resolved the problem?

Because the "Results" and "Discussion" sections are interrelated, they can often be combined as one section.

Conclusions

A separate section outlining the main conclusions of the project is appropriate if conclusions have not already been stated in the "Discussion" section. Directions for future work are also suitably expressed here.

Summary

A lengthy report, or one in which the findings are complex, usually benefits from a paragraph summarizing the main features of the report—the objectives, the findings, and the conclusions.

The last paragraph of text in manuscripts prepared for publication in customarily dedicated to acknowledgements. However, there is no rule about this, and research reports or senior thesis frequently place acknowledgements following the title page.

References

Literature references are collated at the end of the report and are cited in one of the formats described in The ACS Style Guide or standard journals. Do not mix formats. All references should be checked against the original literature.

Preparing the Manuscript

Personal computers have made manuscript preparation and revision a great deal easier than it used to be. Students should always type their reports and use graphics software to allow numerical data to be graphed, chemical structures to be drawn, and mathematical equations to be represented. These are essential tools of the technical writer. All manuscripts should be routinely spell checked and carefully proofread before being submitted. Preliminary drafts should be edited by the faculty advisor and revised by the student before the report is presented in final form.
Laboratory Safety Certificate

Please follow the links below and complete the following trainings in order to get the Laboratory Safety Certificate before the initiation of your senior research.

1. Right to Know Basic Training
 http://www.usg.edu/facilities/rtk-ghs

2. Online Bloodborne Pathogen Training
 http://www.usg.edu/facilities/training/pathogens/

3. CITI Certificate Completion (due with research final project)
 https://www.citiprogram.org/
 - Select “Create Account”
 - Step number 1 states, “Select your institution or organization”. Under “Participating Institutions” select Georgia State University. Then scroll down to step number 2.
 - Complete the subsequent steps

If you have any questions or concerns regarding laboratory safety and/or training, please do not hesitate to contact Areeen Chowdhury via the following contact information.

Areeen Chowdhury, M.S., HMMT
Chemical Safety Specialist
University Research Services and Administration
Georgia State University
Office: 404-413-3565
Fax: 404-413-3539
Achowdhury1@gsu.edu
Responsible Conduct of Research online course

The Chemistry Department requires that all students conducting research complete the CITI online Physical Science Module, based on federal government and GSU regulations. Each student needs to complete this course and return to me a printout of the Curriculum Completion Report. Completion of this online course is required to for all lab TAs, graduate and undergraduate.

The objective is to present and discuss responsible conduct of research (RCR) in chemistry, with emphasis on ethics of conducting research, data analysis, and conformance to federal and community guidelines in the chemical laboratory. The Physical Science module contains text, embedded case studies and quizzes. Successful completion of the course will satisfy federal guidelines for RCR training and documentation.

This will take you anywhere from 6 to 12 hours, so plan accordingly. Because there are a number of segments to complete, multiple log in sessions are encouraged. There are a total of 123 questions, of which you must answer 80% correctly to pass. Quizzes can be retaken.

To do the online training, go here:

http://ursa.research.gsu.edu/ursa/compliance/human-subjects/citi-course-registration/

Under the third option, Responsible Conduct in Research, click on the "log onto modules provided by CITI" link and create a new account. About three pages in to the registration you will encounter this page:

New Human Subjects Research (HSR) content

Updated content reflects the latest thinking on informed consent.

View Courses

Click on the Physical Science RCR button as has shown above. Two screens later you will get to the Main Menu and from there you can enter the modules. When you have completed the required Physical Science module, save and print out a copy of the Course Completion Form. Please do not forget to submit a copy of this to me, and I will give them to the department office to keep as records on file, as required by GSU.

Thanks for your attention to this very important matter.
Right to Know Training

All graduate and undergraduate chemistry students working in either teaching or research labs MUST complete the Universities Right to Know training. There are two modules that chemistry students should complete.

1. The Right to Know Basic Course
2. The Hazardous Waste Training
3. Portable Fire Extinguisher Training / Instructions

Each online module takes between 5 to 10 minutes to complete. To continue through each course use the “next tab” in the upper right hand corner. You need to make copies of the completion certificates for both of the completed modules. The training courses can be found at the following web address:

On-Line Training

On-Line Safety Training For Your Convenience

Right To Know Basic Training
This program is designed to educate USG employees on the importance and benefits of properly recognizing and safely working with hazardous materials. A printable certificate of completion is available.

Hazardous Waste Training
This program is designed to educate employees on the importance and benefits of properly identifying, handling, and disposing of hazardous wastes. A printable certificate of completion is available.

Bloodborne Pathogens Training
This program is designed to provide a basic understanding of bloodborne pathogens, common modes of transmission, and methods of preventing exposure. A printable certificate of completion is available.

Computer Workstation Ergonomic Training
This program is designed to provide knowledge, skills, and educational tools to help identify potential ergonomic related injuries, recognize ergonomic risk factors, and reduce regionalized risks by using good ergonomic work practices and procedures. A printable certificate of completion is available.

Library Ergonomic Training for Stacking
This program is designed to provide an awareness of ergonomics and how it applies to handling books in the library. A printable certificate of completion is available.

Hearing Conservation For Musicians
This program consists of a brief series of slides is provided to acquaint students, visitors, and others with an understanding of potential hearing losses associated with the study of music and control measures that can minimize these exposures. This program is downloadable.

Portable Fire Extinguisher Training / Information
A program that was created by Brooks Equipment Company as a public service with the intention to provide customers and the general public easy access to useful information related to the application and proper use of fire extinguishers. A printable certificate of completion is available.
Notes**

1. You must complete both the Basic and Chemical Specific programs.
2. You should work this at a computer with a printer because the completion certificates cannot be saved.
3. THERE IS NO WAY TO SAVE YOUR CERTIFICATE AND IT WILL NOT PRINT TO PDF!!!!
4. You may need to take a screen shot.
5. You should keep THREE copies of each certificate.
 a. One copy should be turned in to the Department to keep on file.
 b. One copy should be given to the Lab coordinator for any lab you teach.
 c. You should keep one copy for yourself.